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A group-theoretical discussion on the hypercubic lattice described by the affine

Coxeter–Weyl group Wa(Bn) is presented. When the lattice is projected onto the

Coxeter plane it is noted that the maximal dihedral subgroup Dh of W(Bn) with h

= 2n representing the Coxeter number describes the h-fold symmetric aperiodic

tilings. Higher-dimensional cubic lattices are explicitly constructed for n = 4, 5, 6.

Their rank-3 Coxeter subgroups and maximal dihedral subgroups are identified.

It is explicitly shown that when their Voronoi cells are decomposed under the

respective rank-3 subgroups W(A3), W(H2)�W(A1) and W(H3) one obtains the

rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron,

respectively. Projection of the lattice B4 onto the Coxeter plane represents a

model for quasicrystal structure with eightfold symmetry. The B5 lattice is used

to describe both fivefold and tenfold symmetries. The lattice B6 can describe

aperiodic tilings with 12-fold symmetry as well as a three-dimensional

icosahedral symmetry depending on the choice of subspace of projections.

The novel structures from the projected sets of lattice points are compatible with

the available experimental data.

1. Introduction

Quasicrystallography gained enormous impetus after the first

discovery of the icosahedral quasicrystal by D. Shechtman

(Shechtman et al., 1984). Its point symmetry can be described

by the Coxeter group WðH3Þ representing the icosahedral

symmetry of order 120. Recent developments indicate that the

quasicrystals exhibit fivefold, eightfold, tenfold, 12-fold and

18-fold symmetries. For a general exposition we refer the

reader to the literature on quasicrystallography (Janot, 2012;

Di Vincenzo & Steinhardt, 1991; Senechal, 1995; Steurer, 2004;

Tsai, 2008). In a recent paper (Lubin et al., 2012) it was

reported that a quasicrystallographic structure with 36-fold

symmetry is possible. These predictions imply that no limita-

tion exists on the order of the planar point symmetry of the

quasicrystallography described by the dihedral groups. That

reminds us of the classification of the Coxeter–Weyl groups

with different Coxeter numbers h (Coxeter, 1951; Coxeter &

Moser, 1965; Bourbaki, 1968; Humphreys, 1990). Every

Coxeter–Weyl group has a dihedral subgroup Dh of order 2h.

This paper attempts to illustrate the relations between the

group-theoretical structures of the affine Coxeter groups

WaðBnÞ and the h-fold symmetric quasicrystallography

obtained from higher-dimensional cubic lattices by orthogonal

projections. A general projection technique of the higher-

dimensional cubic lattice is prescribed by Duneau & Katz

(1985) but with no detailed group-theoretical discussion on

the symmetries of the lattices. For an earlier work see also de

Wolff (1974).
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There have been several other approaches by using affine

extensions of the noncrystallographic Coxeter groups (Moody

& Patera, 1993; Patera & Twarock, 2002; Dechant et al., 2012,

2013) for the description of fivefold symmetric quasicrystals as

well as quasicrystals with icosahedral symmetry. There is yet

another approach for the description of quasicrystal struc-

tures. This is a set-theoretic approach initiated by Yves Meyer

(Meyer, 1972, 1995) and later developed by Robert V. Moody

(Moody, 1995, 2000) in the name of Model Set.

The Lie groups derived from the root systems of the

Coxeter–Weyl groups are well known by the high-energy

physicists. Predictions of the standard model of high-energy

physics described by the Lie group SUð3Þ � SUð2Þ � Uð1Þ

(Weinberg, 1967; Salam, 1968; Fritzsch et al., 1973) are heavily

based on the Coxeter–Weyl group WðA2Þ �WðA1Þ. The

skeletons of the Grand Unified theories, SUð5Þ � E4 (Georgi

& Glashow, 1974), SOð10Þ � E5 (Fritzsch & Minkowski, 1975)

and the exceptional group E6 (Gürsey et al., 1976) are the

respective Coxeter–Weyl groups WðA4Þ;WðD5Þ and WðE6Þ. It

is expected that some of the Coxeter–Weyl groups with a

Coxeter number h may also play an important role in the study

of quasicrystallography. The argument is based on the

following line of thought.

Any Coxeter group with a Coxeter number h has a maximal

dihedral subgroup Dh of order 2h which acts in the Coxeter

plane. [It is unfortunate that the same notation is also used for

the Coxeter–Weyl group WðDnÞ]. In two recent papers (Koca,

Koca & Koc, 2014a; Koca, Koca & Al-Sawafi, 2014) we have

proposed that a quasicrystallographic structure with h-fold

symmetry can be determined by projections of the higher-

dimensional lattices onto the relevant Coxeter planes. The

Coxeter groups are naturally characterized by some integers

known as Coxeter exponents (Coxeter, 1951; Humphreys,

1990). In this paper we study the general structure of the root

lattice of the affine Coxeter group WaðBnÞ. It is the simple

cubic lattice in nD Euclidean space with the point symmetry

determined by the Coxeter–Weyl group WðBnÞ of order 2nn!.
The projection of the five-dimensional cubic lattice onto a

plane and the projection of the six-dimensional cubic lattice

into a three-dimensional subspace have been studied

previously without using Coxeter group techniques (Duneau

& Katz, 1985; de Bruijn, 1981). Projections of some four-

dimensional root lattices have also been studied previously

(Kramer & Neri, 1984; Baake, Kramer et al., 1990; Baake,

Joseph et al., 1990).

The group WðBnÞ itself can be regarded as an extension of

the elementary abelian group 2n by its permutation group Sn.

The paper is organized as follows. In x2 we study the general

structure of the Coxeter–Weyl group WðBnÞ with some

emphasis on its maximal subgroups which could be useful for

the projections of the hypercubic lattices. x3 deals with the

study of the rank-3 subgroups of the Coxeter–Weyl groups

WðB4Þ;WðB5Þ and WðB6Þ and projections of some of their

polytopes into three-dimensional Euclidean spaces with

different residual symmetries. The projection of the Voronoi

cell of a higher-dimensional lattice plays a crucial role in the

description of the quasicrystallographic structures in three

dimensions and two dimensions. Its structure for the WðBnÞ

lattices will be pointed out. x4 is devoted to the projection

techniques of the lattices onto the Coxeter planes and the

projection of the six-dimensional cubic lattice into three-

dimensional subspace with icosahedral symmetry. Our

predictions are compared with experimental data in x5 and

some concluding remarks are added.

2. The Coxeter–Weyl group W(Bn) and its maximal
subgroups

The classification of the Coxeter–Weyl groups is well known

(Coxeter, 1951; Coxeter & Moser, 1965; Bourbaki, 1968;

Humphreys, 1990). It includes an infinite series of crystal-

lographic groups An;Bn;Cn;Dn, and a finite number of crys-

tallographic exceptional groups G2;F4;E6;E7;E8. In addition

to the above crystallographic groups there are an infinite

number of noncrystallographic dihedral Coxeter groups I2ðhÞ

ðh � 5; h 6¼ 6Þ and the two rank-3 and rank-4 noncrystallo-

graphic Coxeter groups WðH3Þ and WðH4Þ, respectively. In

this section we will be interested in the group-theoretical

structures of the Coxeter–Weyl group WðBnÞ of rank n. It is

represented by the Coxeter–Dynkin diagram shown in Fig. 1.

From left to right the nodes denote the long simple roots

�i ði ¼ 1; 2; . . . ; n� 1Þ with norm
ffiffiffi
2
p

and the last simple root

�n is the short root with norm 1. They represent linearly

independent vectors in n-dimensional Euclidean space. The

angle between any two adjacent simple roots with norm
ffiffiffi
2
p

is

120� and the angle between the last two simple roots is 135�.

Any two disconnected roots are orthogonal to each other. The

nodes also denote the reflection generators ri whose action on

an arbitrary vector � in the n-dimensional Euclidean space is

given by

ri� ¼ ��
2ð�; �iÞ

ð�i; �iÞ
�i: ð1Þ

It is useful to work in the dual space of the root space

represented by the weight vectors !i defined by

!i;
2�j

ð�j; �jÞ

� �
¼ �ij:

When the direct space is associated with the root space the

reciprocal lattice is associated with the weight space. The

Cartan matrix of the root space (Gram matrix) and the metric

tensor in the dual space are defined, respectively, by the matrix

elements

Aij ¼
2ð�i; �jÞ

ð�j; �jÞ
; Gij ¼ ð!i; !jÞ ¼ ðA

�1
Þij
ð�j; �jÞ

2
: ð2Þ
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Figure 1
Coxeter–Dynkin diagram of the Coxeter–Weyl group WðBnÞ.



Let li ði ¼ 1; 2; . . . ; nÞ be the set of orthonormal vectors

ðli; ljÞ ¼ �ij in n-dimensional Euclidean space. The simple roots

of WðBnÞ can be written as

�1 ¼ l1 � l2; �2 ¼ l2 � l3; . . . ; �n�1 ¼ ln�1 � ln; �n ¼ ln: ð3Þ

The root system consists of two sets, one set with 2n short

roots �li and the other with 2nðn� 1Þ long roots

�li � lj ði 6¼ jÞ. Reflection generators ri act on the unit vectors

as follows:

r1 : l1 $ l2; r2 : l2 $ l3; . . . ; rn�1 : ln�1 $ ln; rn : ln !�ln:

ð4Þ

The generators ri generate the Coxeter–Weyl group WðBnÞ.

Equation (4) implies that the reflection generators leave the

other unit vectors (not shown) invariant. The weight vectors

can be determined from !i ¼ ðA
�1Þij�j as

!1 ¼ l1; !2 ¼ l1 þ l2; . . . ; !n�1 ¼ l1 þ l2 þ . . .þ ln�1;

!n ¼
1

2
ðl1 þ l2 þ . . .þ lnÞ: ð5Þ

Any highest weight vector (Slansky, 1981) in the weight

space can be written as � = a1!1 þ a2!2 þ . . .þ an!n

	 ða1; a2; . . . ; anÞ with integer coefficients ai � 0. We will

delete the commas between the integers as long as an integer

does not exceed 9. An orbit of � under the Coxeter–Weyl

group WðBnÞ will be denoted by WðBnÞ� 	 ða1a2 . . . anÞBn
.

With this notation, e.g., the orbits ð100 . . . 0ÞBn
¼ �li and

ð010 . . . 0ÞBn
¼ �li � lj ði 6¼ jÞ represent the sets of short

roots and long roots, respectively. The orbit ð00 . . . 01ÞBn
¼

1
2 ð�l1 � l2 � . . .� lnÞ represents the vertices of a cube in

n-dimensional Euclidean space. Before we discuss the

maximal subgroups of the group WðBnÞ we point out that the

same Coxeter–Weyl group defines another Coxeter–Dynkin

diagram Cn where the short and long roots are represented

by the roots �1 ¼ l1 � l2, �2 ¼ l2 � l3; . . . ; �n�1 ¼ ln�1 � ln,

�n ¼ 2ln. Here the short and long roots of WðBnÞ are inter-

changed but the symmetry group is the same as defined in

equation (4). Certain maximal subgroups of WðBnÞ can be

useful in the study of quasicrystals. One of the maximal

subgroups of WðBnÞ is the Coxeter–Weyl group WðDnÞ with

the Coxeter–Dynkin diagram given in Fig. 2. It consists of only

long roots of norm
ffiffiffi
2
p

.

The group WðDnÞ is a maximal subgroup with an order of

2n�1n! in the group WðBnÞ with an index 2. Denote by r0i the

reflection generators of WðDnÞ and the simple roots by

�01 ¼ l1 � l2; �
0
2 ¼ l2 � l3; . . . ; �0n�1 ¼ ln�1 � ln; �

0
n ¼ ln�1 þ ln:

ð6Þ

The first n � 1 simple roots are identical to the simple roots of

WðBnÞ except the last one. The generators of WðDnÞ transform

the unit vectors as in equation (4) but the last generator differs

in its action:

r01 : l1 $ l2; r02 : l2 $ l3; . . . ; r0n�1 : ln�1 $ ln; r0n : ln�1 $ �ln:

ð7Þ

This implies that one can identify ri
0 ¼ ri (for i =

1; 2; . . . ; n� 1) and we note that r0n ¼ rnrn�1rn. The Coxeter–

Dynkin diagram of WðDnÞ has a diagram symmetry

� : �0n�1 $ �0n which transforms � : ln !�ln leaving the

other unit vectors invariant and it can be identified with rn.

Therefore the automorphism group of Dn is AutðDnÞ �

WðDnÞ : Z2 � WðBnÞ where the group Z2 is generated by �.

We note that there is one exception to this general result: the

automorphism group of D4 is larger than WðB4Þ since its

Dynkin diagram symmetry is isomorphic to the symmetry

group S3 � D3 of order 6. The automorphism group is then the

group AutðD4Þ � WðD4Þ : S3 � WðF4Þ. This is well known as

triality of the D4 symmetry. We also note that some of the

orbits of WðDnÞ and the orbits of WðBnÞ have an identical

number of vertices:

ð10 . . . 0ÞDn

��� ��� ¼ ð10 . . . 0ÞBn

��� ���; ð010 . . . 0ÞDn

��� ��� ¼ ð010 . . . 0ÞBn

��� ���;
; . . . ; ð00 . . . 1000ÞDn

��� ��� ¼ ð00 . . . 1000ÞBn

��� ���: ð8Þ

The orbit ð00 . . . 01ÞBn
is the union of two orbits of WðDnÞ,

ð00 . . . 1ÞBn
¼ ð00 . . . 10ÞDn

[ ð00 . . . 01ÞDn
: ð9Þ

The group WðBnÞ admits the groups WðBn�1Þ and WðAn�1Þ as

maximal subgroups. One of the interesting maximal subgroups

of WðBnÞ is the dihedral group WðI2ðhÞÞ � Dh of order 2h.

Dihedral group Dh plays an important role in the study of two-

dimensional quasicrystals with h-fold symmetry. The argument

goes as follows. The simple roots of WðBnÞ decompose in

such a way that the corresponding reflection generators

r1; r3; . . . ; rn�1 commute pairwise as well as the set

r2; r4; . . . ; rn for even n. A similar decomposition can be done

for odd n. Define now the generators R1 and R2 by

R1 ¼ r1r3 . . . rn�1 and R2 ¼ r2r4 . . . rn (Steinberg, 1951). It is

easy to show that the generators R1 and R2 act as reflections

on the simple roots of the Coxeter diagram I2ðhÞ and the

Coxeter element R1R2 represents a rotation of order h in the

plane spanned by the simple roots (Carter, 1972) of the

Coxeter–Dynkin diagram I2ðhÞ. The Coxeter exponents

mi
�
h ði ¼ 1; 2; . . . ; nÞ with mi ¼ 1; 3; 5; . . . ; 2n� 1 and the

Coxeter number h ¼ 2n are useful in the determination of the

Coxeter plane in which one can have a quasicrystallographic

point symmetry of the projected set of points. The eigenvalues

of the Cartan matrix in equation (2) can be written simply

�i ¼ 2½1� cosðmi
�
hÞ
 (Coxeter, 1951). To study the quasicrys-

tallography the plane determined by the eigenvectors corre-

sponding to the pair of eigenvalues 2½1� cosðmi
�
hÞ
,

2½1� cosððh�miÞ
�
hÞ
 is of interest. One can choose a conve-

nient set of orthogonal unit vectors obtained from the eigen-

vectors of the Cartan matrix (Koca, Koca & Koc, 2014a; Koca,

Koca & Al-Sawafi, 2014):
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Figure 2
Coxeter–Dynkin diagram of WðDnÞ.



x̂xi ¼
1ffiffiffiffiffiffiffi
h�i

p
X

j

2�j

ð�j; �jÞ
Xji
; ð10Þ

where Xi is the eigenvector of the Cartan matrix given in

equation (2) corresponding to the eigenvalue �i with a

normalization where the last components of the eigenvectors

all equal 1. The simple roots �i; �nþ1�i of the dihedral group

I2ð
h

mi
Þ,

�i ¼
ffiffiffi
2
p

sin
mi�

2h

� �
x̂xi þ cos

mi�

2h

� �
x̂xnþ1�i

h i
;

�nþ1�i ¼
ffiffiffi
2
p

sin
mi�

2h

� �
x̂xi � cos

mi�

2h

� �
x̂xnþ1�i

h i
;

i ¼ 1; 2; . . . ;
n

2

� �
; ð11Þ

determine the principal planes in which the generators R1 and

R2 act like reflection generators on the simple roots �i; �nþ1�i.

The Coxeter element R1R2 is represented by a block-diagonal

matrix consisting of 2� 2 matrices for even n in the space

where the simple roots are represented by equation (11). This

is equivalent to the statement that the lattice space is

decomposed into two-dimensional spaces in which the dihe-

dral group generated by R1 and R2 acts as a point group.

The root lattice of WðBnÞ is the simple cubic lattice which is

invariant under the affine Coxeter group WaðBnÞ that can be

generated by adding a generator r0 to the set of generators of

the group WðBnÞ. The generator r0 represents a reflection with

respect to the hyperplane bisecting the highest long root

~�� ¼ !2 ¼ l1 þ l2. Its action on an arbitrary vector is a trans-

lation.

A general vector of the root lattice then will be given by

p ¼ b1�1 þ b2�2 þ . . .þ bn�n; bi 2 Z which can also be

written in the weight space as p ¼ a1!1 þ a2!2 þ . . .
þ 2an!n; ai 2 Z. This indicates that a general vector of the

lattice is the linear combinations of the unit vectors li with

integer coefficients. This also implies that the root lattice of

WðBnÞ is generated by its short roots. The primitive cell of the

lattice can be chosen as the cube with the vertices

0; li; li þ lj ði< jÞ; li þ lj þ lk ði< j< kÞ; . . . ;

li þ lj þ . . .þ lk ði< j< . . . < kÞ: ð12Þ

There are 2n such cubes sharing the origin as a vertex. The

Voronoi cells around the lattice points are congruent poly-

topes tiling the n-dimensional Euclidean space. The Voronoi

cells of lattices are important in the theory of coding (Conway

& Sloane, 1988). We denote the Voronoi cell around the origin

by Vð0Þ and its structure is important for the canonical

projection (strip projection, or cut-and-project technique) of

the lattice points onto the Coxeter plane. Vertices of the

Voronoi polytope Vð0Þ can be determined as the intersection

of the hyperplanes surrounding the origin. They are the

hyperplanes determined as the orbits of the fundamental

weights

!1

2
¼

l1

2
;
!2

2
¼

l1 þ l2

2
; . . . ;

!n�1

2
¼

l1 þ l2 þ . . . ln�1

2
;

!n ¼
1

2
ðl1 þ l2 þ . . .þ lnÞ: ð13Þ

The Voronoi polytope Vð0Þ is then a cube around the origin

with the vertices (Conway & Sloane, 1982; Moody & Patera,

1992)

ð00 . . . 01ÞBn
¼

1

2
ð�l1 � l2 . . .� lnÞ: ð14Þ

Before we proceed further we emphasize here that the lattices

generated by the affine Coxeter–Weyl group WaðCnÞ are

identical to the root and weight lattices of the Coxeter–Weyl

group WaðDnÞ (Conway & Sloane, 1988) since the short roots

of WðCnÞ are identical to the root system of the group WaðDnÞ.

The group AutðDnÞ � WðCnÞ should be taken into account

when the point symmetry of the two lattices is of concern.

Therefore, in an n-dimensional Euclidean space with n> 3,

one can construct five different lattices with affine Coxeter–

Weyl groups, two for WaðAnÞ, two for WaðDnÞ, and the other is

the simple cubic lattice described by WaðBnÞ. Of course if n

coincides with the rank of the exceptional groups the number

of lattices will be more than 5. We have to determine the

components of a lattice vector in the principal planes defined

by the pairs of unit vectors ðx̂x1; x̂xnÞ; ðx̂x2; x̂xn�1Þ; . . . where the

plane determined by the vectors ðx̂x1; x̂xnÞ is known as the

Coxeter plane. Note that for odd n one of the unit vectors is

unpaired that represents the direction orthogonal to all

Coxeter planes. The representation of the generators R1 and

R2 of the dihedral subgroup can be put into block-diagonal

matrices with 2� 2 and/or 1� 1 matrix entries. Some of the

planes may display the crystallographic symmetries rather

than the quasicrystallographic symmetries depending on the

values of the Coxeter exponents mi. The component of the

simple cubic lattice vector in the basis of x̂xi is given by

pi ¼
1ffiffiffiffiffiffiffi
h�i

p
Xn�1

j¼1

ajXji þ 2an

 !
; ai 2 Z: ð15Þ

This preliminary introduction to the hypercubic lattice and its

symmetry group will be useful in the following sections where

we study the eightfold, fivefold, tenfold and 12-fold symmetric

quasicrystal structures induced by the projections of the

lattices B4;B5 and B6.

3. The Coxeter–Weyl groups W(B4), W(B5), W(B6) and
projections of their polytopes into three-dimensional
subspaces

The projected copies, in three-dimensional space, of the

Voronoi cells of the root lattices of the Coxeter–Weyl groups

WðB4Þ;WðB5Þ and WðB6Þ are the rhombic dodecahedron,

rhombic icosahedron and rhombic triacontahedron, respec-

tively. This is quite well known in the literature but has never

been presented in a systematic way. A similar work, not in the

context of the affine Coxeter groups, has been reported by

Kramer (1986).
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3.1. The Coxeter–Weyl group W(B4) and projection of its
fundamental polytopes into a three-dimensional subspace
with octahedral symmetry

In the study of representations of the Lie groups the weight

vectors !iði ¼ 1; 2; . . . ; nÞ play an important role and are

called fundamental weights. Hereafter we will call those

polytopes obtained as the orbits of the fundamental weights as

the fundamental polytopes. The vertices of the fundamental

polytopes of the group WðB4Þ are given by

ð1000ÞB4
¼ �li;

ð0100ÞB4
¼ �li � lj ði 6¼ jÞ;

ð0010ÞB4
¼ �li � lj � lk ði 6¼ j 6¼ kÞ;

ð0001ÞB4
¼

1

2
ð�l1 � l2 � l3 � l4Þ; i; j; k ¼ 1; 2; 3; 4: ð16Þ

These are well known four-dimensional polytopes with four-

dimensional cubic symmetry. The first one represents the short

roots of WðB4Þ which constitutes a four-dimensional octahe-

dron with eight vertices whose facets (3-faces) are tetrahedra.

The second polytope consists of 24 long roots as vertices and is

known as the 24-cell with octahedral facets. Its full symmetry

is the Coxeter–Weyl group WðF4Þ which embeds WðB4Þ as a

subgroup with index 3. The third polytope with 32 vertices has

two types of facets: tetrahedra and truncated octahedra. The

last one is the four-dimensional cube with 16 vertices

consisting of the cubic facets.

The subspace we are interested in here is a three-

dimensional Euclidean space with the octahedral symmetry

represented by the Coxeter–Weyl group WðB3Þ of order 48.

Let us recall the isomorphism WðB3Þ � AutðD3Þ � AutðA3Þ

¼ WðA3Þ : Z2. Here one can choose the tetrahedral symmetry

as the Coxeter–Weyl group WðA3Þ ¼ hr1; r2; r3i. The Dynkin

diagram symmetry Z2 generated by � which permutes the unit

vectors as l1 $ l3 and l2 $ l4 extends the group to the octa-

hedral symmetry. Using � and equation (4) for the actions of

the generators r1; r2 and r3 it is clear that the vector
1
2 ðl1 þ l2 þ l3 þ l4Þ is invariant under the octahedral group. To

describe the three-dimensional Euclidean space where the

octahedral group acts as the symmetry group, it is convenient

to introduce a new set of orthonormal vectors defined by

t0 ¼
1

2
ðl1 þ l2 þ l3 þ l4Þ; t1 ¼

1

2
ðl1 � l2 þ l3 � l4Þ;

t2 ¼
1

2
ð�l1 þ l2 þ l3 � l4Þ; t3 ¼

1

2
ðl1 þ l2 � l3 � l4Þ: ð17Þ

When the vectors in equation (16) are expressed in terms of

the vectors t0; t1; t2 and t3 it will be simpler to identify the

three-dimensional vertices of the four-dimensional polytopes.

The four-dimensional octahedron projects onto a cube in three

dimensions with the vertices 1
2 ð�t1 � t2 � t3Þ. The 24-cell

projected into the three-dimensional space represents two

octahedra as well as one cuboctahedron. The polytope with 32

vertices is projected into one cube and two truncated tetra-

hedra. Under the octahedral symmetry the union of two

truncated tetrahedra forms a non-regular polyhedron with 24

vertices. Its faces are made of equilateral triangles, squares

and rectangles.

The polytope ð0001ÞB4
is more interesting since it constitutes

the Voronoi cell of the four-dimensional cubic lattice. Two

vectors � 1
2 ðl1 þ l2 þ l3 þ l4Þ from the set are projected to the

origin. When expressed in terms of the unit vectors t0; t1; t2 and

t3 and the component of an arbitrary vector along t0 is deleted

they will decompose under the octahedral group as two orbits,

one with the vertices ð�t1;�t2;�t3Þ representing the vertices

of an octahedron and the other with vertices 1
2 ð�t1 � t2 � t3Þ

representing a cube. Union of these two orbits represents a

rhombic dodecahedron (Koca et al., 2010) with 14 vertices as

shown in Fig. 3.

3.2. The Coxeter-Weyl group W(B5) and projection of its
fundamental polytopes into three-dimensional subspace with
W(H2) ��� C2 � D5d symmetry

One of the fundamental orbits of the group WðB5Þ is the

polytope ð10000ÞB5
¼ �li ði ¼ 1; 2; . . . ; 5Þ, which represents an

octahedron in five-dimensional Euclidean space whose facets

are 5-cells (4-simplexes). We will see that when it is projected

into a three-dimensional space it represents a pentagonal

antiprism where the subgroup WðH2Þ � C2 � D5d acts as a

point group. To understand this better we have to define a new

set of orthonormal vectors x̂xi ði ¼ 1; 2; . . . ; 5Þ. The first four

unit vectors x̂xi ði ¼ 1; 2; . . . ; 4Þ are obtained by using the

eigenvectors of the Cartan matrix of WðA4Þ and the fifth

vector is chosen to be orthogonal to the rest (Koca, Koca &

Koc, 2014b):

x̂x1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2þ �Þ
p ð�1 þ 	�2 þ 	�3 þ �4Þ;

x̂x2 ¼
1

ð2þ �Þ
ffiffiffi
2
p ð�1 � ��2 þ ��3 � �4Þ;

x̂x3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2þ 	Þ
p ð�1 þ ��2 þ ��3 þ �4Þ;

x̂x4 ¼
1

ð2þ 	Þ
ffiffiffi
2
p ð�1 � 	�2 þ 	�3 � �4Þ;

x̂x5 ¼
1ffiffiffi
5
p ð�1 þ 2�2 þ 3�3 þ 4�4 þ 5�5Þ: ð18Þ

The unit vectors li can be expressed as a linear combination

li ¼
P5

j¼i bijx̂xj where the matrix B is given by
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Figure 3
The rhombic dodecahedron.



B ¼
1ffiffiffiffiffi
10
p

a 	 b ��
ffiffiffi
2
p

b � �a �	
ffiffiffi
2
p

0 �2 0 2
ffiffiffi
2
p

�b � a �	
ffiffiffi
2
p

�a 	 �b ��
ffiffiffi
2
p

0
BBBBBB@

1
CCCCCCA
;

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
p

; b ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ �
p

; 	 ¼
1þ

ffiffiffi
5
p

2
; � ¼

1�
ffiffiffi
5
p

2
: ð19Þ

For their relevance to the projection technique of the five-

dimensional lattice, we now discuss the projections of only two

polytopes ð10000ÞB5
¼ �li ði ¼ 1; 2; . . . ; 5Þ and ð00001ÞB5

¼
1
2 ð�l1 � l2 � l3 � l4 � l5Þ into the three-dimensional space

described by the symmetry group WðH2Þ � C2 � D5d. The

other fundamental polytopes lead to some quasiregular

polyhedra in three-dimensional space and are not of particular

interest here. The group D5d is generated by the group

elements R1 ¼ r1r3;R2 ¼ r2r4 and R3 ¼ ðr1r2r3r4r5Þ
5. Here R1

and R2 generate the dihedral group WðH2Þ � D5 of order 10

and R3 ¼ �I where I is the 5� 5 unit matrix in the li basis.

The centre of the group WðB5Þ is represented by the elements

C2 ¼ fI;�Ig and therefore it commutes with all the elements

of the group. To choose a three-dimensional subspace there

are two options: either the space spanned by ðx̂x1; x̂x4; x̂x5Þ or

ðx̂x2; x̂x3; x̂x5Þ. Let us choose the three-dimensional space defined

by the first set of unit vectors. The set of vectors �li forms

a single orbit under the group D5d. The polytope

ð10000ÞB5
¼ �li projected into three-dimensional space

represents a pentagonal antiprism as shown in Fig. 4.

The polytope ð00001ÞB5
¼ 1

2 ð�l1 � l2 � l3 � l4 � l5Þ repre-

sents the Voronoi cell of the five-dimensional cubic lattice. The

32 vertices decompose under the group D5d as 32 = 2 + 10

+ 20. The first orbit of size 2 represents the vectors

� 1
2 ðl1 þ l2 þ l3 þ l4 þ l5Þ. Each vector is invariant under the

dihedral group D5 but changed to each other under the

elements of the centre C2. The next orbit of size 10 consists of

the vectors like � 1
2 ð�l1 þ l2 þ l3 þ l4 þ l5Þ with one or four

negative signs. They also constitute a pentagonal antiprism

like the one in Fig. 4. The orbit of size 20 consists of the vectors

with two negative and/or three negative signs. The union of

two orbits 2 + 20 constitutes a rhombic icosahedron as shown

in Fig. 5.

3.3. The Coxeter–Weyl group W(B6) and projections of some
of its fundamental polytopes into a three-dimensional
subspace with W(H3) � Ih symmetry

The icosahedral symmetry is the one that describes some

quasicrystal structures in three dimensions. Here we first

discuss how the icosahedral symmetry, the Coxeter group

WðH3Þ � Ih, can be obtained as a subgroup of the Coxeter–

Weyl group WðB6Þ. We have already discussed in x2 that one of

the maximal subgroups of the group WðBnÞ is the group

WðDnÞ. Our interest is then the Coxeter–Weyl group WðD6Þ.

We introduce the generators R1 ¼ r1
0r5
0, R2 ¼ r2

0r4
0 and

R3 ¼ r3
0r6
0. They generate the Coxeter group WðH3Þ

(Shcherbak, 1988; Koca et al., 1998, 2001). Note that in terms

of the generators of the group WðB6Þ they can be written as

R1 ¼ r1r5, R2 ¼ r2r4 and R3 ¼ r3r6r5r6. They satisfy the rela-

tions

R1
2 ¼ R2

2 ¼ R3
2 ¼ ðR1R3Þ

2
¼ ðR1R2Þ

3
¼ ðR2R3Þ

5
¼ 1; ð20Þ

leading to the usual generation relations of the icosahedral

group WðH3Þ � A5 � C2 ¼ Ih. The generators of the icosa-

hedral group are 6� 6 matrices in the space of orthonormal

vectors li and constitute a reducible representation of the

icosahedral group. They can be transformed into block-

diagonal forms of 3� 3 matrices which act on two sets of

orthonormal vectors ðx̂x1; x̂x2; x̂x3Þ and ðx̂x1
0; x̂x2

0; x̂x3
0
Þ. Each block

represents a different 3� 3 irreducible matrix representation.

The block-diagonal form of the generators of the Coxeter

group WðH3Þ induces the relation

l1

l2

l3

l4

l5

l6

0
BBBBBB@

1
CCCCCCA
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ 	Þ

p
�1 �	 0 �	 1 0

1 �	 0 	 1 0

0 �1 �	 0 �	 1

0 �1 	 0 �	 �1

�	 0 �1 1 0 �	
	 0 �1 �1 0 �	

0
BBBBBB@

1
CCCCCCA

x̂x1

x̂x2

x̂x3

x̂x1
0

x̂x2
0

x̂x3
0

0
BBBBBB@

1
CCCCCCA
:

ð21Þ

Before proceeding further we note that one can also construct

the generators of the Coxeter group WðH3Þ as R1 ¼ r1
0r6
0,

R2 ¼ r2
0r4
0 and R3 ¼ r3

0r5
0 from Fig. 2 for n = 6. No elements of

the group WðD6Þ transform this icosahedral group to the one

given in equation (20). However, these two icosahedral groups

can be transformed to each other by the Dynkin diagram

symmetry generator of the Coxeter–Dynkin diagram of D6.

The Dynkin diagram symmetry generator � : r5
0 $ r6

0 inter-

changes the last two generators of the diagram D6 and can be

associated with the r6 ¼ � generator of the group WðB6Þ. Since

r5
0 ¼ r5 and r6

0 ¼ r6r5r6 then the icosahedral group defined in

equation (20) is conjugate to the one defined above in the

group AutðD6Þ � WðB6Þ.
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Figure 4
The pentagonal antiprism.

Figure 5
The rhombic icosahedron with symmetry D5d.



For a projection into three-dimensional space one can use

either the first three components or the last three components

of the unit vectors li. Now we discuss the projections of certain

WðB6Þ polytopes into three-dimensional space with a residual

icosahedral symmetry. The 12 vertices of the polytope

ð100000ÞB6
¼ �li are the short roots of the group WðB6Þ

representing the vertices of a six-dimensional octahedron. The

projected copy in three-dimensional space turns out to be an

icosahedron represented by the vectors of norm 1ffiffi
2
p � 0:707 as

shown in Fig. 6.

The long roots of the group WðB6Þ are the vertices of the

polytope ð010000ÞB6
which are given by the 60 vectors

ð010000ÞB6
¼ �li � lj ði 6¼ jÞ. When they are projected into

three-dimensional space they represent two copies of icosi-

dodecahedra with 30 vertices each, one copy is expanded with

respect to the other by a factor of 	. Their actual norms in

three dimensions are

ffiffiffiffiffiffiffiffiffiffiffi
2

2þ 	

r
� 0:743 and

ffiffiffiffiffiffiffiffiffiffiffi
2

2þ �

r
� 1:203:

The icosidodecahedron is a polyhedron with 30 vertices, 32

faces (20 triangles + 12 pentagons) and 60 edges. One of the

icosidodecahedra is depicted in Fig. 7.

The polytope ð000001ÞB6
¼ 1

2 ð�l1 � l2 � l3 � l4 � l5 � l6Þ

represents the Voronoi cell of the six-dimensional cubic lattice

with 64 vertices. They decompose into sets with even (�) sign

and odd (�) sign representing two orbits of WðD6Þ as

mentioned in x2. We will explicitly demonstrate that each orbit

of WðD6Þ with 32 vertices decomposes as 32 ¼ 20þ 12.

Normally, the orbits of size 20 and 12 represent a dodecahe-

dron and an icosahedron, respectively. However, as we will

discuss below, the situation here is such that the dodecahedron

(orbit I) and icosahedron (orbit III) form a rhombic tria-

contahedron, a Catalan solid dual to the icosidodecahedron

(Koca et al., 2010). The union of the icosahedron (orbit II) and

dodecahedron (orbit IV) represents a star dodecahedron.

Below we give explicit decomposition of the vertices of the six-

dimensional cube under the Coxeter group WðH3Þ. The first

two orbits are the decomposition of the vertices with even (�)

sign of vectors and the next two are the vertices with odd (�)

sign.

Orbit I: dodecahedron (I)

�
1

2
ðl1 þ l2 þ l3 þ l4 þ l5 þ l6Þ; �

1

2
ðl1 þ l2 þ l3 � l4 � l5 þ l6Þ;

�
1

2
ð�l1 þ l2 þ l3 � l4 þ l5 þ l6Þ; �

1

2
ð�l1 � l2 þ l3 � l4 � l5 þ l6Þ;

�
1

2
ð�l1 � l2 � l3 � l4 þ l5 þ l6Þ; �

1

2
ðl1 þ l2 þ l3 � l4 þ l5 � l6Þ;

�
1

2
ð�l1 þ l2 þ l3 þ l4 � l5 þ l6Þ; �

1

2
ðl1 � l2 þ l3 � l4 þ l5 þ l6Þ;

�
1

2
ð�l1 þ l2 � l3 � l4 � l5 þ l6Þ; �

1

2
ð�l1 � l2 þ l3 � l4 þ l5 � l6Þ:

ð22aÞ

Orbit II: icosahedron (II)

�
1

2
ð�l1 � l2 þ l3 þ l4 þ l5 þ l6Þ; �

1

2
ðl1 � l2 � l3 � l4 � l5 þ l6Þ;

�
1

2
ð�l1 þ l2 � l3 � l4 þ l5 � l6Þ; �

1

2
ð�l1 � l2 þ l3 þ l4 � l5 � l6Þ;

�
1

2
ðl1 � l2 � l3 þ l4 þ l5 þ l6Þ; �

1

2
ð�l1 þ l2 � l3 þ l4 þ l5 þ l6Þ:

ð22bÞ

Orbit III: icosahedron (III)

�
1

2
ðl1 þ l2 þ l3 þ l4 þ l5 � l6Þ; �

1

2
ðl1 þ l2 þ l3 þ l4 � l5 þ l6Þ;

�
1

2
ðl1 þ l2 þ l3 � l4 þ l5 þ l6Þ; �

1

2
ð�l1 þ l2 þ l3 � l4 � l5 þ l6Þ;

�
1

2
ð�l1 � l2 þ l3 � l4 þ l5 þ l6Þ; �

1

2
ðl1 � l2 þ l3 � l4 þ l5 � l6Þ:

ð22cÞ

Orbit IV: dodecahedron (IV)

�
1

2
ðl1 � l2 þ l3 � l4 � l5 þ l6Þ; �

1

2
ð�l1 þ l2 � l3 � l4 þ l5 þ l6Þ;

�
1

2
ð�l1 � l2 þ l3 � l4 � l5 � l6Þ; �

1

2
ð�l1 � l2 � l3 þ l4 þ l5 þ l6Þ;

�
1

2
ðl1 � l2 � l3 � l4 � l5 � l6Þ; �

1

2
ð�l1 þ l2 þ l3 � l4 þ l5 � l6Þ;

�
1

2
ð�l1 � l2 þ l3 þ l4 � l5 þ l6Þ; �

1

2
ðl1 � l2 � l3 � l4 þ l5 þ l6Þ;

�
1

2
ð�l1 þ l2 � l3 � l4 � l5 � l6Þ; �

1

2
ð�l1 � l2 þ l3 þ l4 þ l5 � l6Þ:

ð22dÞ

To see why they represent dodecahedra and icosahedra we

just replace the vectors li by their first three components in

equation (21). However, when we take the union of orbit I and

orbit III we obtain the rhombic triacontahedron as shown in

Fig. 8. The orbit II and the orbit IV form a dodecahedral star

which is depicted in Fig. 9.

The vectors representing the vertices of the icosahedra and

dodecahedra have the following norms in decreasing order:

research papers

Acta Cryst. (2015). A71, 175–185 Mehmet Koca et al. � Group-theoretical analysis of aperiodic tilings 181

Figure 6
An icosahedron projected from the six-dimensional octahedron
ð100000ÞB6

.

Figure 7
Icosidodecahedron projected from the six-dimensional polytope
ð010000ÞB6

.



Nðicosahedron IIIÞ ¼
	ffiffiffi
2
p � 1:144;

Nðdodecahedron IÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3ð2þ 	Þ

p
� 1:042;

Nðdodecahedron IVÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3ð2þ �Þ

p
� 0:644;

Nðicosahedron IIÞ ¼
��ffiffiffi

2
p � 0:438: ð23Þ

These are exactly the same results obtained earlier by Conway

& Knowles (1986) without referring to the overall group

structure of the B6 lattice. Note also that

Nðicosahedron IIIÞ=Nðicosahedron IIÞ ¼ 	2;

Nðdodecahedron IÞ=Nðdodecahedron IVÞ ¼ 	: ð24Þ

Since the icosahedron obtained from the short roots has a

norm 0.707, these three icosahedra follow the ratio ð1 : 	 : 	2Þ

up to an overall scale factor. We also note in passing that the

vectors �li, when projected into three-dimensional subspace,

form rhombohedra when taken in groups of three. For

example the sets of vectors ðl1; l2; l3Þ and ðl4; l5; l6Þ form an

acute and an obtuse rhombohedra, respectively, as shown in

Fig. 10.

4. Projections of the lattices of the Coxeter–Weyl
groups W(B4), W(B5) and W(B6) into subspaces

The technique which we developed for the projection of the

polytopes can now be applied to the lattice points. We will

study each case separately. We decompose the nD space into

two subspaces Ek and E?, where Ek represents the subspace

into which the lattice points are to be projected and the

subspace E? is the complementary orthogonal subspace. The

shift of the Voronoi cell Vð0Þ along the space Ek creates an

open strip and the projection of the Voronoi polytope into the

subspace E? determines a region K. It has been shown with a

number of examples that the set of lattice points projected

from the open strip onto the subspace Ek determines a

quasicrystallographic structure (Kalugin et al., 1985; Elser,

1985; Elser & Henley, 1985). We will discuss the applications

of this procedure in the following subsections.

4.1. Projection of the lattice points of B4 into a two-
dimensional space

We will show here that the projected set of lattice points

displays a quasicrystal with eightfold symmetry. The compo-

nents of a lattice vector p ¼ a1!1 þ a2!2 þ a3!3 þ 2a4!4,

ai 2 Z along the unit vectors x̂xi are given as follows:

p1 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
pp
Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2
p

q
a1 þ

ffiffiffi
2
p

a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
p

q
a3 þ 2a4

� �

p4 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
ppq
Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2
p

q
a1 þ

ffiffiffi
2
p

a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
p

q
a3 þ 2a4

� �

p2 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2
pp
Þ

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
p

q
a1 �

ffiffiffi
2
p

a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2
p

q
a3 þ 2a4

� �

p3 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2
pp
Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2
p

q
a1 �

ffiffiffi
2
p

a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
2
p

q
a3 þ 2a4

� �
:

ð25Þ

Let us assume that Ek ¼ ðx̂x1; x̂x4Þ and E? ¼ ðx̂x2; x̂x3Þ. When the

circumsphere of the Voronoi cell Vð0Þ ¼ ð0001ÞB4
is projected

onto the plane E? ¼ ðx̂x2; x̂x3Þ, it determines a disc of radius

R0 ¼ maxðp2
2 þ p3

2Þ. This defines a cylinder in the lattice

constraining the integers ai. When the shifted Voronoi cell

Vð!4Þ ¼ ð0001ÞB4
þ !4 is projected into the subspace E? ¼

ðx̂x2; x̂x3Þ the components ðp1; p4Þ now determine the quasi-

crystal structure with eightfold symmetry as shown in Fig. 11.

It consists of squares and rhombi with angles of 45�. Similar

structures were obtained in a recent paper (Jagannathan &

Duneau, 2014). A quasicrystal structure with eightfold

symmetry has been observed in rapidly solidified Cr5Ni3Si2

and V15Ni10Si alloys (Wang et al., 1987), and can be repre-

sented by quasicrystal structures like that in Fig. 11.
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Figure 9
The dodecahedral star projected from the six-dimensional cube.

Figure 8
The rhombic triacontahedron obtained as part of the projection of the
six-dimensional cube.

Figure 10
The acute and obtuse rhombohedra generated by the vectors li.



4.2. Projection of the lattice B5 into a two-dimensional
subspace

Projection of the five-dimensional cubic lattice onto a two-

dimensional plane with fivefold symmetry has been discussed

previously (de Bruijn, 1981) with no reference to the Coxeter

group WðB5Þ. As we have pointed out in x2, the Coxeter

number of the group WðB5Þ is 10 and has a dihedral subgroup

D10 of order 20 with a cyclic subgroup of order 10 leading to a

tenfold symmetry. In this section we will study the projections

with both symmetries. The fivefold symmetric projection of

the lattice can be obtained by taking the set of orthogonal

vectors given by equation (18). Since we project the lattice on

a plane where the dihedral subgroup is taken from the

subgroup WðA4Þ � WðB5Þ whose Coxeter number is 5, this

leads to a fivefold symmetric structure. The components of a

general root lattice vector p ¼ ða1!1 þ a2!2 þ a3!3 þ a4!4 þ

2a5!5Þ, ai 2 Z can be determined by taking the scalar product

of the lattice vector with the unit vectors in (18). Projection of

the Voronoi cell Vð0Þ into the space defined by the unit vectors

ðx̂x2; x̂x3; x̂x5Þ determines the window K which constrains the

lattice vectors to be projected onto the plane ðx̂x1; x̂x4Þ. When

the shifted vector Vð!5Þ ¼ ð00001ÞB5
þ !5 is projected into the

circumsphere of the rhombic icosahedron in the subspace

ðx̂x2; x̂x3; x̂x5Þ, the distribution of the aperiodic lattice structure in

the Coxeter plane ðx̂x1; x̂x4Þ is depicted in Fig. 12. The x̂x5

direction in this case preserves the translational invariance.

The tenfold symmetric quasicrystal structure by projection

of the root lattice of the group WðB5Þ can be obtained by using

the orthonormal vectors in equation (10). The unit vectors in

equation (10) follow the sequence of the Coxeter exponents

m1 ¼ 1;m2 ¼ 3;m3 ¼ 5;m4 ¼ 7;m5 ¼ 9. To distinguish this

set of vectors from those in equation (18) we will label them as

xi
0 ði ¼ 1; 2; 3; 4; 5Þ. This sequence implies that the pairs

ðx̂x1
0; x̂x5

0
Þ and ðx̂x2

0; x̂x4
0
Þ determine the principal planes with the

first pair being the Coxeter plane; the first one can be taken as

Ek and the second pair together with the unit vector x̂x3
0
defines

the subspace E?. The components of the lattice vectors in the

planes and the orthogonal direction are given by

Ek :

p1 ¼
1ffiffiffiffiffi

10
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
pp ð��a1 þ

ffiffiffiffiffiffiffiffiffiffiffi
2þ �
p

a2

þ 	a3 þ
ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
p

a4 þ 2a5Þ;

p5 ¼
1ffiffiffiffiffi

10
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
pp ð��a1 �

ffiffiffiffiffiffiffiffiffiffiffi
2þ �
p

a2

þ 	a3 �
ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
p

a4 þ 2a5Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

E? :

p2 ¼
1ffiffiffiffiffi

10
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffiffiffiffiffiffiffiffiffi
2þ �
pp ð�	a1 �

ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
p

a2

þ �a3 þ
ffiffiffiffiffiffiffiffiffiffiffi
2þ �
p

a4 þ 2a5Þ;

p4 ¼
1ffiffiffiffiffi

10
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffiffiffiffiffiffiffiffiffi
2þ �
pp ð�	a1 þ

ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
p

a2

þ �a3 �
ffiffiffiffiffiffiffiffiffiffiffi
2þ �
p

a4 þ 2a5Þ;

p3 ¼
1ffiffiffi
5
p ða1 � a3 þ a5Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

:

ð26Þ

The quasicrystal structure with tenfold symmetry from the

projection of the root lattice of the Coxeter group WðB5Þ is

shown in Fig. 13.

4.3. Projection of the root lattice of B6 into two-dimensional
and three-dimensional subspaces

The Coxeter number of the group WðB6Þ is 12. Therefore it

is quite natural to expect a 12-fold symmetric quasicrystal

structure in a plane from the projection of the root lattice of

the six-dimensional cubic lattice. We have studied projection

of the six-dimensional cubic lattice in another publication

(Koca, Koca & Koc, 2014a; Koca, Koca & Al-Sawafi, 2014)

using the formula (10) for the group WðB6Þ and obtained the

quasicrystal structure in Fig. 14.

Fig. 14 shows that the dodecagonal tiling displayed here is

different to the usual tiling which is based only on the triangle
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Figure 12
Fivefold symmetric structure from projection of the W(B5) root lattice.

Figure 13
Tenfold symmetric quasicrystal structure from the five-dimensional cubic
lattice.

Figure 11
The quasicrystal structure obtained from the four-dimensional cubic
lattice.



and square tiles. It also involves rhombi in addition to square

and triangle tiles. Such a structure has been recently observed

in the dodecagonal quasicrystal formation of BaTiO3 (Förster

et al., 2013).

The projection of the six-dimensional cubic lattice into

three-dimensional subspace has been discussed previously in

various papers without taking into account the detailed

structure of the Coxeter group WðB6Þ (Duneau & Katz, 1985;

Elser, 1985; Conway & Knowles, 1986). In x3.3 we studied

explicitly the icosahedral subgroup WðH3Þ of the Coxeter

group WðB6Þ and showed that the space can be decomposed

as Ek and E? defined by the unit vectors ðx̂x1; x̂x2; x̂x3Þ and

ðx̂x01; x̂x02; x̂x03Þ, respectively. A general root lattice vector can be

written as

p ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2þ 	Þ
p ½ðn1 þ n2	Þx̂x1 þ ðn3 þ n4	Þx̂x2 þ ðn5 þ n6	Þx̂x3

þ 	ðn1 þ n2�Þx̂x
0
1 þ 	ðn3 þ n4�Þx̂x

0
2 þ 	ðn5 þ n6�Þx̂x

0
3
; ð27Þ

where the integers ni are given by

n1 ¼ �a1; n2 ¼ �a5; n3 ¼ �ða3 þ 2a4 þ 2a5 þ 2a6Þ;

n4 ¼ �ða1 þ 2a2 þ 2a3 þ 2a4 þ 2a5 þ 2a6Þ;

n5 ¼ �ða5 þ 2a6Þ; n6 ¼ �a3: ð28Þ

A similar formula to equation (27) involving just the coeffi-

cients of the unit vectors x̂x1; x̂x2 and x̂x3 was obtained previously

from another consideration (Rokhsar et al., 1987).

The root vectors �i ði ¼ 1; 2; 3Þ of the Coxeter diagram

of WðH3Þ can be determined as �1 ¼ �
ffiffiffi
2
p

x̂x1, �2 ¼

1ffiffi
2
p ðx̂x1 þ �x̂x2 þ 	x̂x3Þ, �3 ¼ �

ffiffiffi
2
p

x̂x3. Note that the pairs of

vectors ð�1; �3Þ, ð�1; �2Þ and ð�2; �3Þ determine the twofold,

threefold and fivefold symmetry planes, respectively. By

choosing suitable orthogonal vectors in these planes such as

ðx̂x1; x̂x3Þ; ðŷy1; ŷy2Þ and ðẑz1; ẑz2Þ where

ŷy1 ¼
1

2
ð�x̂x1 þ �x̂x2 þ 	x̂x3Þ; ŷy2 ¼

�1

2
ffiffiffi
3
p ð3x̂x1 þ �x̂x2 þ 	x̂x3Þ;

ẑz1 ¼
1

2
ð	x̂x1 � x̂x2 þ �x̂x3Þ; ẑz2 ¼

1

2
ffiffiffiffiffiffiffiffiffiffiffi
2þ 	
p ðx̂x1 þ �x̂x2 þ ð2þ 	Þx̂x3Þ;

ð29Þ

one can project the lattice vectors in equation (27) onto these

planes provided the E? components of the vectors remain in

the window K determined by the projection of the circum-

sphere of the Voronoi cell of the six-dimensional cube.

The distributions of the lattice points are displayed in Figs.

15, 16 and 17.

5. Conclusions

We presented a systematic analysis of the higher-dimensional

lattice projection technique with an emphasis on the group-

theoretical structure of the nD cubic lattices. It is proposed

that the Coxeter number h of the Coxeter–Weyl group WðBnÞ

plays a crucial role in the determination of the dihedral

subgroup Dh of the group WðBnÞ, that in turn determines the

symmetry of the quasicrystal structure in the Coxeter plane.

The eigenvalues and eigenvectors of the Cartan matrix (Gram
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Figure 14
Twelvefold symmetric quasicrystal structure from the six-dimensional
cubic lattice.

Figure 15
Twofold symmetry from projection of the B6 lattice.

Figure 16
Threefold symmetry from projection of the B6 lattice.

Figure 17
Fivefold symmetry from projection of the B6 lattice.



matrix) lead to the correct choice of the Coxeter plane onto

which the lattice is projected. We reproduce the earlier results

obtained from the lattice projections. In addition, in two cases

we obtained new results: the tenfold symmetric quasicrys-

tallography from WðB5Þ and the 12-fold symmetric quasi-

crystal structure from WðB6Þ lead to some novel structures. In

particular the tiling displayed in Fig. 14 is compatible with a

recent experiment with 12-fold symmetry (Förster et al., 2013).

The technique developed here can be extended to any higher-

dimensional lattice described by the whole series of affine

Coxeter groups. Projections of these lattices by choosing the

E? space as the projected sets of the Voronoi cells have been

studied in the literature previously. Here we presented an

alternative approach by projecting the circumsphere of the

Voronoi cell into the E? space to confront two different

techniques.

References

Baake, M., Joseph, D., Kramer, P. & Schlottmann, M. (1990). J. Phys.
A Math. Gen. 23, L1037–L1041.

Baake, M., Kramer, P., Schlottmann, M. & Zeidler, D. (1990). Int. J.
Mod. Phys. B4, 2217–2268.

Bourbaki, N. (1968). Groupes et Algèbres de Lie, ch. IV–VI. Paris:
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